INORGANIC CHEMISTRY

Total Marks: 27

Max. Time: 29 min.

Topic: Chemical Bonding

Type of Questions		M.M., Min.
Single choice Objective ('-1' negative marking) Q.1 to Q.5	(3 marks, 3 min.)	[15, 15]
Multiple choice objective ('-1' negative marking) Q.6	(4 marks, 4 min.)	[4, 4]
Subjective Questions ('-1' negative marking) Q.7 to Q.8	(4 marks, 5 min.)	[8, 10]

- 1. Which of the following pairs of species would you expect to have largest difference in spin magnetic moment:
 - (A) O_2 , O_2^+
- (B) O₂,O₂²⁻
- (C) O₂+, O₂²⁻
- (D) O_2^- , O_2^+
- 2. According to Molecular orbital theory, HOMO in O_2^- is :
 - (A) $\pi 2p_x = \pi 2p_y$
- (B) $\pi^* 2p_x = \pi *2p_y$ (C) $\sigma 2p_z$
- (D) $\sigma^* 2p_7$

- 3. Order of stability of $\rm N_2,\,N_2^{\,+}$ and $\rm N_2^{\,-}$ is :
 - (A) $N_2 > N_2^+ > N_2^-$ (B) $N_2^+ > N_2 > N_2^-$ (C) $N_2^- > N_2 > N_2^+$ (D) $N_2^- = N_2^+ > N_2^-$

- The bond order in NO is 2.5 while that in NO⁺ is 3. Which of the following statements is true for these two 4.
 - (A) Bond length comparison is unpredictable.
- (B) Bond length in NO is greater than in NO+.
- (C) Bond length in NO⁺ is equal to that in NO.
- (D) Bond length in NO+ is greater than in NO.
- 5. According to Molecular orbital theory, which of the following statement about the magnetic character and bond order of O2+ is correct:
 - (A) Paramagnetic and bond order less than that of O₂
 - (B) Paramagnetic and bond order greater than that of O_2 .
 - (C) Diamagnetic and bond order less than that of O₂
 - (D) Diamagnetic and bond order greater than that of O_2 .
- 6.* Which of the following is/are correct:
 - (A) Carbon-carbon bond length in CaC₂ will be more than in CH₂CCH₂
 - (B) O-O bond length in KO₂ will be more than in Na₂O₂.
 - (C) O-O bond length in O₂ [PtF₆] will be less than that in KO₂
 - (D) N-O bond length in NO gaseous molecule will be smaller than in NOCI gaseous molecule.
- 7. Of the following species, which has the highest bond order and shortest bond length: NO, NO+, NO+, NO-+, NO-+
- 8. Explain why NO+ is more stable towards dissociation than NO, whereas CO+ is less stable towards dissociation than CO.

Answer Key

DPP No. #20

1. (B)

2. (B)

3. (A)

4. (B)

5. (B)

6.* (CD)

7. NO+.

- NO has lost an antibonding electron to form NO⁺. So NO⁺ is more stable.
 - CO has lost a bonding electron to form CO*. So CO* is less stable.

Hints & Solutions

DPP No. # 20

1. O₂ = 2 unpaired e⁻

O = 1 unpaired e-

O = 1 unpaired e

 O_2^{2} = 0 unpaired e

O₂ and O₂-have largest difference in no. of unpaired electrons. So, they have largest difference in magnetic moment.

2. O_2^- : KK $(\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2 (\pi 2p_x^2 = \pi 2p_y^2) \underbrace{(\pi^* 2p_x^1 = \pi^* 2p_y^1)}_{HOMO}$

3. Bond order of $N_2 = 3$

Bond order of $N_2^{2+} = 2.5$

Bond order of $N_2^- = 2.5$

But N₂⁺ consist of lesser electrons in anti bonding molecular orbital. So it is more stable than N₂⁻.

as $N_2^+ = \sigma_{1s}^2 < \sigma_{1s}^{\star 2} < \sigma_{2s}^2 < \sigma_{2s}^{\star 2} < \pi_{\chi} 2p^2 = \pi_{\chi} 2p^2 < \sigma_{2p_{\chi}}^1$ $N_2^- = \sigma_{1s}^2 < \sigma_{1s}^{\star 2} < \sigma_{2s}^2 < \sigma_{2s}^{\star 2} < \pi_{\chi} 2p^2 = \pi_{\chi} 2p^2 < \sigma_{2p_{\chi}}^2 < \pi_{\chi} 2p^{\star 1} = \pi_{\chi} 2p^{\star 0}$

- Greater bond order ⇒ Lesser bond length.
- 5. $O_2^+ = BO = 2.5 > BO_{O_2}$ 15 electron : paramagnetic.
- 6.* In CaC, there is $C \equiv C$, while in CH, CCH, there is only C = C.

 $KO_2 = K^+ + O_2^-$

Bond order = 1.5

 $Na_2O_2 = 2Na^+ + O_2^{-2}$

Bond order = 1.0

 O_2 (Pt F_6) = O_2^+ + [Pt F_6]

Bond order = 2.5

NO Bond order = 2.5

while in NOCI, bond order = 2.

7.

Species	No. of electrons	Bond order	Magnetic nature
NO	15	1/2 (10 – 5) = 2.5	Paramagnetic
NO⁺	14	1/2 (10 – 4) = 3.0	Diamagnetic
NO ²⁺	13	1/2 (9 – 4) = 2.5	Paramagnetic
NO ⁻	16	1/2 (10 – 6) = 2.0	Diamagnetic

Highest bond order ⇒ shortest bondlength (NO+).

8. NO has lost an antibonding electron to form NO*. So NO* is more stable. CO has lost a bonding electron to form CO*. So CO* is less stable.

